

Corey Clay, MCS

Technical Consultant
Nextec Group, Inc.

Cleveland, Ohio
http://www.nextecgroup.com

Smartlist Builder & Cross DB Queries

Problem:
When using Smartlist Builder with a custom SQL view that is a “cross database query” or any table from
a custom database a GP user that is setup in SQL as a “sysadmin” will have no trouble seeing data in the
created Smartlist assuming appropriate Smartlist Builder security has been granted for the user inside
GP (see pg. 76 of the April 2008 edition Smartlist Builder User Guide with Excel Report Builder).

However, if you are in GP as a non-admin user, there is a good chance that you would not be able to see
data on Smartlists created in Smartlist Builder that utilize these views or tables even if all GP security is
set properly for your user. Furthermore, it is possible that you won’t be able to see the new Smartlists at
all.

Figure 1.0 – Sample Cross Database Query to create a SQL View.

USE TWO
GO

IF object_id(N'SampleView', 'V') IS NOT NULL
 DROP VIEW SampleView
GO

CREATE VIEW SampleView
AS SELECT *
 FROM TWO..SOP10100 T1
 INNER JOIN myDatabase..WebOrders T2 ON T1.SOPNUMBE = T2.OrderNum

http://www.nextecgroup.com/

Corey Clay, MCS

Technical Consultant
Nextec Group, Inc.

Cleveland, Ohio
http://www.nextecgroup.com

Resolutions:
There are 2 possible options for resolving the issue with having the ability to see the data on these new
Smartlists. However, you must first confirm that the “DYNGRP” database role is granted “SELECT”
permission on the view or table used in your new Smartlist (See Figure 1.1 for an example). This will
enable the user to at least see the new Smartlist even it won’t populate the data.

Figure 1.1 – Database Role Properties Window -> “Securables” Tab

Option 1: In order for the data to appear in the new Smartlist, the user that is trying to run the Smartlist
must exist as a SQL user in all of the databases that are being queried by the new Smartlist. This option
could become very cumbersome if there are a lot of users that would need to have the ability to run the
Smartlist because each user would have to be added to the “foreign database”. In the case of my
example script in above (Figure 1.0) the user would have to exist in both the TWO database (which we
would know they do) as well as the database called “myDatabase”.

http://www.nextecgroup.com/

Corey Clay, MCS

Technical Consultant
Nextec Group, Inc.

Cleveland, Ohio
http://www.nextecgroup.com

Option 2: SQL Server has a setting that is disabled by default, but can be manually enabled called Cross
Database Ownership Chaining. This feature can be enabled either by script or via the server properties
window as shown below in figure 1.2. The feature is described in depth in Appendix A & Appendix B
which are both taken from the Online Help for Microsoft SQL 2005. Ownership Chaining will allow the
query to run as long as the TWO database and “myDatabase” have the same “db_owner”. When the
view tries to reference a table in the foreign database “myDatabase”, ownership chaining will kick in and
check to see that the calling database and the target database have the same owner, if they do, there
will be no further security checking. Please note that, when enabling this option, the SQL server must
be restarted for the change to take effect.

Figure 1.2 – Server Properties Window -> Security Tab -> Options -> Cross database ownership chaining

http://www.nextecgroup.com/

Appendix A: Page 1

Corey Clay, MCS

Technical Consultant
Nextec Group, Inc.

Cleveland, Ohio
http://www.nextecgroup.com

SQL Server 2005 Books Online (September 2007)
Ownership Chains
Security Considerations for Databases and Database Applications >
When multiple database objects access each other sequentially, the sequence is known as a chain. Although such
chains do not independently exist, when SQL Server 2005 traverses the links in a chain, SQL Server evaluates
permissions on the constituent objects differently than it would if it were accessing the objects separately. These
differences have important implications for managing security.

Ownership chaining enables managing access to multiple objects, such as multiple tables, by setting permissions
on one object, such as a view. Ownership chaining also offers a slight performance advantage in scenarios that
allow for skipping permission checks.

How Permissions Are Checked in a Chain

When an object is accessed through a chain, SQL Server first compares the owner of the object to the owner of the
calling object. This is the previous link in the chain. If both objects have the same owner, permissions on the
referenced object are not evaluated.

Example of Ownership Chaining

In the following illustration, the July2003 view is owned by Mary. She has granted to Alex permissions on the
view. He has no other permissions on database objects in this instance. What happens when Alex selects the view?

1. Alex executes SELECT * on the July2003 view. SQL Server checks permissions on the view and confirms that

Alex has permission to select on it.
2. The July 2003 view requires information from the SalesXZ view. SQL Server checks the ownership of the

SalesXZ view. Because this view has the same owner (Mary) as the view that calls it, permissions on
SalesXZ are not checked. The required information is returned.

http://www.nextecgroup.com/

Appendix A: Page 2

Corey Clay, MCS

Technical Consultant
Nextec Group, Inc.

Cleveland, Ohio
http://www.nextecgroup.com

3. The SalesXZ view requires information from the InvoicesXZ view. SQL Server checks the ownership of the
InvoicesXZ view. Because this view has the same owner as the previous object, permissions on InvoicesXZ
are not checked. The required information is returned. To this point, all items in the sequence have had one
owner (Mary). This is known as an unbroken ownership chain.

4. The InvoicesXZ view requires information from the AcctAgeXZ view. SQL Server checks the ownership of
the AcctAgeXZ view. Because the owner of this view is different from the owner of the previous object
(Sam, not Mary), full information about permissions on this view is retrieved. If the AcctAgeXZ view has
permissions that allow access by Alex, information will be returned.

5. The AcctAgeXZ view requires information from the ExpenseXZ table. SQL Server checks the ownership of
the ExpenseXZ table. Because the owner of this table is different from the owner of the previous object
(Joe, not Sam), full information about permissions on this table is retrieved. If the ExpenseXZ table has
permissions that allow access by Alex, information is returned.

6. When the July2003 view tries to retrieve information from the ProjectionsXZ table, the server first checks
to see whether cross-database chaining is enabled between Database 1 and Database 2. If cross-database
chaining is enabled, the server will check the ownership of the ProjectionsXZ table. Because this table has
the same owner as the calling view (Mary), permissions on this table are not checked. The requested
information is returned.

Cross-Database Ownership Chaining

SQL Server can be configured to allow ownership chaining between specific databases or across all databases
inside a single instance of SQL Server. Cross-database ownership chaining is disabled by default, and should not be
enabled unless it is specifically required.

Potential Threats

Ownership chaining is very useful in managing permissions on a database, but it does assume that object owners
anticipate the full consequences of every decision to grant permission on a securable. In the previous illustration,
Mary owns most of the underlying objects of the July2003 view. Because Mary has the right to make objects that
she owns accessible to any other user, SQL Server behaves as though whenever Mary grants access to the first
view in a chain she has made a conscious decision to share the views and table it references. In real life, this might
not be a valid assumption. Production databases are far more complex than the one in the illustration, and the
permissions that regulate access to them rarely map perfectly to the administrative structures of the organizations
that use them.

You should understand that members of highly privileged database roles can use cross-database ownership
chaining to access objects in databases external to their own. For example, if cross-database ownership chaining is
enabled between database A and database B, a member of the db_owner fixed database role of either database
can spoof her way into the other database. The process is simple: Diane (a member of db_owner in database A)
creates user Stuart in database A. Stuart already exists as a user in database B. Diane then creates an object
(owned by Stuart) in database A that calls any object owned by Stuart in database B. Because the calling and
called objects have a common owner, permissions on the object in database B will not be checked when Diane
accesses it through the object she has created.

http://www.nextecgroup.com/

Appendix B: Page 1

Corey Clay, MCS

Technical Consultant
Nextec Group, Inc.

Cleveland, Ohio
http://www.nextecgroup.com

SQL Server 2005 Books Online (September 2007)

cross db ownership chaining Option
Administering the Database Engine > Managing Servers > Setting Server Configuration Options >

Use the cross db ownership chaining option to configure cross-database ownership chaining for an instance of
Microsoft SQL Server.

This server option allows you to control cross-database ownership chaining at the database level or to allow cross-
database ownership chaining for all databases:

• When cross db ownership chaining is off (0) for the instance, cross-database ownership chaining is disabled
for all databases.

• When cross db ownership chaining is on (1) for the instance, cross-database ownership chaining is on for
all databases.

• You can set cross-database ownership chaining for individual databases using the SET clause of the ALTER
DATABASE statement. If you are creating a new database, you can set the cross-database ownership chaining
option for the new database using the CREATE DATABASE statement.

Setting cross db ownership chaining to 1 is not recommended unless all of the databases hosted by the
instance of SQL Server must participate in cross-database ownership chaining and you are aware of the
security implications of this setting. For more information, see Ownership Chains.

Controlling Cross-Database Ownership Chaining

Before turning cross-database ownership chaining on or off, consider the following:

• You must be a member of the sysadmin fixed server role to turn cross-database ownership chaining on or off.

• Before turning off cross-database ownership chaining on a production server, fully test all applications,
including third-party applications, to ensure that the changes do not affect application functionality.

• You can change the cross db ownership chaining option while the server is running if you specify
RECONFIGURE with sp_configure.

• If you have databases that require cross-database ownership chaining, the recommended practice is to turn off
the cross db ownership chaining option for the instance using sp_configure; then turn on cross-database
ownership chaining for individual databases that require it using the ALTER DATABASE statement.

http://www.nextecgroup.com/

	Problem:
	Resolutions:
	How Permissions Are Checked in a Chain
	Example of Ownership Chaining
	Cross-Database Ownership Chaining
	Potential Threats
	Controlling Cross-Database Ownership Chaining

